
Accelerating Text Mining Using
Domain-Specific Stop Word Lists

Farah Alshanik, Amy Apon, Alexander Herzog, Ilya Safro, Justin Sybrandt
School of Computing
Clemson University

Clemson, USA
{falshan, aapon, aherzog, isafro, jsybran}@clemson.edu

Abstract—Text preprocessing is an essential step in text mining.
Removing words that can negatively impact the quality of predic-
tion algorithms or are not informative enough is a crucial storage-
saving technique in text indexing and results in improved com-
putational efficiency. Typically, a generic stop word list is applied
to a dataset regardless of the domain. However, many common
words are different from one domain to another but have no
significance within a particular domain. Eliminating domain-
specific common words in a corpus reduces the dimensionality of
the feature space, and improves the performance of text mining
tasks. In this paper, we present a novel mathematical approach
for the automatic extraction of domain-specific words called
the hyperplane-based approach. This new approach depends on
the notion of low dimensional representation of the word in
vector space and its distance from hyperplane. The hyperplane-
based approach can significantly reduce text dimensionality by
eliminating irrelevant features. We compare the hyperplane-
based approach with other feature selection methods, namely
χ2 and mutual information. An experimental study is performed
on three different datasets and five classification algorithms, and
measure the dimensionality reduction and the increase in the
classification performance. Results indicate that the hyperplane-
based approach can reduce the dimensionality of the corpus by
90% and outperforms mutual information. The computational
time to identify the domain-specific words is significantly lower
than mutual information.

Reproducibility: code and results can be found at https:
//github.com/FarahAlshanik/Domain-Specific-Word-List

Index Terms—Domain-Specific Words; Hyperplane; Dimen-
sionality Reduction; Feature Selection; Text Classification;

I. INTRODUCTION

The amount of raw text data produced in science, finance,
social media, and medicine is growing at an unprecedented
pace. Without effective preprocessing, the raw text data typi-
cally introduces major computational and analytical obstacles
(e.g., extremely high dimensionality) to data mining and
machine learning algorithms. Hence, text preprocessing has
become an essential step to better manage and handle various
challenges inherent with the raw data before it is ready for
text mining tasks. Stop word removal is one of the most
important steps in text preprocessing. Stop words are those
that appear frequently and commonly and contribute little
analytical meaning and value in text mining tasks [1], [2].

Elimination of stop words reduces text count in the corpus
typically by 35% to 45% and makes the application of text
mining methods more effective [3]. In the majority of text min-

ing tasks, preprocessing begins with eliminating stop words
without considering the domain of application. For example, in
the popular Python Natural Language ToolKit (nltk) module,
the English stop words list contains frequent words such as
“the”, “and”, “to”, “a”, and “is” [4]. However, there may
exist many domain-specific words that do not add value in
a text mining application but that increase the computational
time. For instance, the word “protein” is likely to add little
value in text mining of bioinformatics articles, but not for
a collection of political articles. Reduction in running time
is also extremely important for such tasks as streaming and
sliding window text mining [5], [6].

The objective of this paper is to present the hyperplane-
based approach for detecting and eliminating domain-specific
common words in a corpus of documents in addition to (or
in some cases instead of) commonly-used stop words. Our
approach aims to enhance the performance of binary text
classification and to reduce the dimensionality. In binary text
classification, the documents are grouped into two classes.
The trained classifier’s role is to predict the document class.
However, the domain-specific words often mislead the classi-
fiers’ prediction. The hyperplane-based approach employs the
principle of low dimensional representation of words using the
word2vec skip-gram model. The main idea of our approach
is to project in the vector space both centroids of the two
classes and each word in the corpus. The method constructs
a hyperplane perpendicular to the normalized vector between
the centroids of the two classes such that the words closer to
the perpendicular hyperplane are selected as domain-specific
common words.

To justify the proposed approach and to demonstrate the
contextual difference with other traditional feature elimination
methods, we eliminate a varying count of the detected domain-
specific words from the corpus and observe the accuracy
of five different classifiers: Naive Bayes, Logistic Regres-
sion, Random Forest, Support Vector Machine (SVM), and
Classification and Regression Trees (CART). We evaluate
the five approaches on three different datasets: (1) Pubmed
[7], (2) IMDB movie reviews [8], and (3) Hansard Speeches
1979–2018 [9].

Two major experiments were performed. First, we observed
the performance of our approach before and after eliminating
domain-specific words on the classification accuracy and ex-
ecution time. Secondly, we compared the classifier accuracy978-1-7281-6251-5/20/$31.00 ©2020 IEEE

https://github.com/FarahAlshanik/Domain-Specific-Word-List
https://github.com/FarahAlshanik/Domain-Specific-Word-List

and validate our results with other feature selection methods
namely χ2 and mutual information. The classifiers are used
to predict the journal name for the Pubmed dataset, sentiment
for the IMDB movie review dataset, and party for the Hansard
Speeches. Also, we found the size of the overlap of the
remaining words after eliminating the domain-specific words
between our approach and the χ2 or mutual information.

The results show that the hyperplace-based approach has
improved performance in terms of accuracy and execution
time with respect to feature selection methods. Through our
proposed approach we identify that a significant number of
stopwords can be removed without reducing the accuracy of
any classifier we considered. On the contrary, we determine
that after removing 90% of the words within the Hansard
Speeches dataset according to our method, the accuracy of a
Random Forest classifier increases by 4%, and a Naive Bayes
classifier increases by 12%.

II. RELATED WORK

Stop word removal has been an active area of research and
several studies have sought an automated method for generat-
ing a stop word list for different languages. Some studies try to
find a generic stop word list that is domain independent. Others
focus on finding domain-specific words that are document-
dependent [10]. One method, term frequency, was the first
automated process for identifying and extracting stop words.
The term frequency approach produces valuable results for the
words that have the highest frequency in the corpus, but term
frequency does not take into account the words that occur
frequently in only some documents. Also, the term frequency
does not consider the words that rarely occur in the corpus but
still meaningless for the classification. [11]. Our work differs
from this approach by returning the domain-specific common
words with respect to the document collection.

In [12] the authors used term frequency for word elimination
and studied its effect on the similarity of Hindi text documents.
They found that the removal of stop words based on term
frequency decreased the similarity of documents. In [13] au-
thors used term frequency with Punjabi texts. They identified
615 stop words in a corpus of more than 11 million words.
However, in later work they found that the frequency count
cannot be taken as the true measure of stop word identification
[14]. To overcome the drawback of the frequency words the
authors used a statistical model based on the distribution
of words in documents along with the frequency count to
generate an aggregated stop word list for the Punjabi language.

Word entropy is another method. It was used in [11] to
generate web-specific stop lists for web document analysis.
This research aimed to eliminate common web-specific terms
such as ’email’, ’contact’, etc. The words with the lowest
entropy were considered to be stop words. The method was
evaluated using the web document dataset and the BankSearch
dataset. The authors successfully extracted the web-specific
stop list from the web document dataset. However, the results
on the BankSearch dataset, which consists of 10 different
categories, showed a bias towards low entropies for words

that are category-related and frequent in a large number of
documents. The authors claimed that to use the word entropy
the dataset should be unbiased towards any subject category.
In [15] the authors used word entropy to generate a Mongolian
stopword list.

Other research has combined the term frequency and word
entropy approaches. In [16] the authors used strategies focused
on statistical methods and knowledge-based measures for
creating generic stop words for Hindi text. The objective is to
measure the information content of each word in the corpus,
which is measured using word entropy. The main advantage of
this method is to overcome the problem inherited by manually
picking stop words, which takes a lot of time. Authors in [17]
aggregate term frequency and entropy value to construct the
first stop word list for the Amharic text.

A Chinese corpus consisting of Xinhua News and People’s
Daily News is used in [18] to find a generic stop word list
aggregated from two models: a statistical model that measures
the combination of mean probability and variance of probabil-
ity, and an information model that measures the informativity
of words using the words’ entropy in the corpus. The generated
Chinese stop word list had a high intersection with the English
stop words. Also, compared with other Chinese stop lists, this
method was more effective, and it was faster than manual
generation [18]. The methodology was used to generate an
Arabic stop word list in [19] with superior performance.

Authors in [20] present the term-based random sampling
approach in which they generated a list of stop words based
on the importance of terms using Kullback-Leibler divergence
measure, which models how informative a term is. They
show that term-based random sampling outperforms the rank-
frequency approach in terms of computational effort to derive
the stop word list. However, using the term-based random
sampling approach on DOTGOV and the WT10G collections
to obtain the stop word list did not provide better results than
baseline approaches.

A dictionary approach is used in [21] to generate the first
Sanskrit stop word list. However, this method of generating
the stop word list is both resource intensive and time con-
suming [17]. The hyperplane-based approach does not require
a dictionary to return the domain-specific words. A rule-
based approach using static eleven rules was used in [22]
to automatically develop a stop word list for the Gujarati
language. The main limitation of this approach, as described
in the paper, appears when the stop words contain more than
three characters. In the hyperplane-based approach there is no
limitation based on the length of the domain-specific word.

A method based on the weighted χ2 was used to generate
the Chinese stop word list [23]. The method considers the high
document frequency and the low statistical correlations with
all the classification categories. This is the first list that uses the
dependent relationship between a word and all categories in a
set of documents. This approach inputs a threshold to specify
the size of the stop word list. The Naive Bayes classifier tested
the performance of the generated stop words before and after
elimination, and tested stop word lists of various lengths. The

study eliminated the words based on some threshold. However,
there is no guidance on the optimal elimination percentages
of the detected domain-specific words. In our work we have
performed extensive experiments to find and provide guidance
on the best percentage of elimination.

III. BACKGROUND

The low-dimensional representation method, word2vec, is
utilizing the skip-gram model. The word2vec maps words into
a low-dimensional space revealing non-trivial context based
relationships between them. Many syntactic and semantic
relationships between words can be defined by using simple al-
gebraic operations on the word vectors. For example, the word
vector ”King” - word vector ”Man” + word vector ”Woman”
results in a word vector similar to vector representation of the
word vector ”Queen” [24].

Naive Bayes classifier [25], a probabilistic model based on
Bayes theorem, is a supervised learning technique broadly
used for text clasification. The method is, in practice, ex-
tremely sensitive to preprocessed data quality and other fac-
tors. Here we mostly use it as a baseline technique to reflect
the sensitivity of the preprocessing.

Support Vector Machine (SVM) is a quadratic optimization-
based technique that, in its simplest form, maximizes the mar-
gin between classes using the optimized separating hyperplane.
While having fast performance, the linear SVM is known to be
sensitive to hard classification problems. Slower nonlinear (aka
kernel based) SVM often produces higher quality results but
requires suboptimal heuristics to achieve linearly scalability.
[26]. Here we use the Thunder SVM package [27] which
provides a good quality/performance trade-off.

We also use three other broadly applicable classification
techniques, namely, Logistic Regression [28], Random Forest
[29], and Classification and Regression Trees (CART) [30].
These are methods of comparable quality when applied in the
text mining domain. Their implementation is available inside
Python’s module called Scikit-learn [31].

IV. DOMAIN-SPECIFIC WORD DETECTION

A. Simplified Example

The basics of our approach are best understood with a
simple example on a synthetic dataset. Suppose a synthetic
binary class dataset of total of 40,000 documents is generated
in which the two classes have an equal number of documents.
The length of each document from both classes is 300 words.
The words are chosen randomly from predefined dictionary
that has been created for this experiment. Dictionaries of
classes A and B consist of 2000 words each represented by
wi, and vi, respectively, where 1 ≤ i ≤ 2000. The classes
are disjoint and any classifier will result in a 100% accuracy.
Now, in order to include common words between the classes,
a dictionary of 300 words mi is created, 1 ≤ i ≤ 300.
Then, 10 mi words are randomly added to each document
in the two class. The word2vec skip-gram is applied on the
synthetic data corpus to project the words into a vector space
using 100-dimensional word vectors. After that the centroid

Fig. 1. PCA-based visualization of the synthetic dataset embedding. The
closest words to hyperplane are marked in blue (300 words). The words that
have a largest distance are marked in red (300 words), the centroid embedding
of the class A and class B are marked in pink and gold, respectively

of each class is calculated by averaging the word embedding
in each class. We found that the common words mi exist in
the middle between the two classes as shown in Fig. 1 (blue
points). Accordingly, we decided to create a perpendicular
hyperplane on the normalized vector between the centroid of
the two classes (pink and gold). Additionally, we calculated
the distance between each unique word in the corpus and the
hyperplane, such that the words that have the shortest distance
will be the domain-specific common words, and the words that
have the longest distance will be the words that are used to
distinguish between the two classes (red).

B. Overview of the Approach

We introduce the hyperplane-based approach to detect the
domain-specific words. It is based on the distance of the
word from the separating hyperplane with the notion of a
low dimensional vector representation of the words using
the word2vec model [32]. The domain-specific words are
determined as the words that have the shortest distance from
the hyperplane.

This approach aims to enhance the performance of binary
text classification and reduce the execution time of the classi-
fier. The goal is to eliminate the features (i.e., words) that are
not used to distinguish between the two classes. The flowchart
of the approach is presented in Fig. 2. The hyperplane-based
method consists of four main steps: 1) text prepossessing, 2)
centroid embedding, 3) computing the tokens’ distances from
an orthogonal hyperplane, and 4) sorting and detecting the
domain-specific common words list. These steps are explained
in the following subsections.

C. Text Preprocessing

The text preproccesing step starts by tokenizing the text,
then converting the words to lower case, and finally removing
the special characters as shown in Fig. 2. Traditional stop
words (such as those that are given in Python nltk module)
are not removed. Rather, some or all of the stop words are
anticipated to be removed as a result of our method which
indeed happens in the end of the entire process.

D. Centroid Embedding

The centroids of class are the averages over the correspond-
ing word embeddings precomputed usign word2vec skip-gram

Fig. 2. Hyperplane-based approach steps

model. This results that the semantically similar words are
mapped together in a vector space. This representation is
also known as distributed numerical representations of word
features.

Given two disjoint classes of n documents, namely, A and
B. The centroid of a class is defined using the following
steps. First, the word2vec skip-gram model is utilized to
construct a k-dimensional representation of each word, i.e.,
each embedded word, or token, t is represented as a vector
emb(t) = (t1, t2, t3, ..., tk). Then, the centroid of each class
is computed as the average of the embeddings of words from
that class:

CenterX =

∑
t∈X

emb(t)

M
, (1)

where X is a class, emb(t) is an embedding function,
and M is the total number of unique words in class X .
In Fig. 3, we visualize the example of embedding using
the 2D PCA dimensionality reduction from the initial 100-
dimensional embedding space. In this example, the corpus of
documents for classification contains abstracts of two journals,
Cell and Journal of Prosthetic Dentistry, extracted from the
Pubmed dataset. The figure illustrates the two-dimensional
visualization of the individual journals’ centroids and the stop
words in nltk module, represented by diamonds and stars,
respectively.

E. Distance from Hyperplane

In this paper, the separating hyperplane non-strictly defines
the boundary between the two classes and their centroids,
nanemly, A (CenterA) and class B (CenterB). It is orthog-
onal to the line connecting the centroids, and passes through
its middle. It is defined by the linear equation:

w′x+ b = 0 (2)

Fig. 3. PCA-based visualization of the Cell and Journal of Prosthetic Dentistry
from Pubmed dataset. The closest words to hyperplane are marked in blue
(300 words), the words that have a largest distance are marked in red (300
words), the centroid embedding of the cell and Journal of Prosthetic Dentistry
journals are marked in pink and gold respectively, some nltk stop words are
plotted in white.

where w is the slope of the plane, b the offset. The
first step is to find the slope of the plane, i.e. the normal
vector perpendicular to the plane (w), which is defined as the
difference between the two centroids A and B as appear in
equation (3).

w = Center(A)− Center(B) (3)

The offset point (b) will be equal to the negative dot product
of the normal vector by the coordinate of any point on the
plane as expressed in equation (4).

b = −w · x0 (4)

The predefined point at this stage is the mid point between
the two centroids (x0), which can be calculated using:

x0 =
CenterA − CenterB

2
(5)

After defining the hyperplane equation, the distance between
any point (embedded words in space) to the hyperplane is
calculated as:

d =
|w · x0 + b|
||w||

(6)

Fig. 3 shows that the shortest distance words (blue points)
are clustered around the hyperplane which are the domain-
specific words. The longest distance words (red points) are
far away from the hyperplane which are the words that used
to distinguish between the two classes.

Fig. 3 also includes the 127 stop words from the Python
nltk (black stars). It can be noticed that the majority of these
words are near the hyperplane, however, few of them defined

Fig. 4. nltk stop Words frequency in Cell and Journal of Prosthetic Dentistry.

as longest distance words. To explain such behavior, a sample
of nltk stop words which positioned on various distances
with respect to the hyperplane is picked as shown in Fig. 3.
These words are: ”our”, “here”, “an”, “is”, “that”, “of”, “the”,
“your”, “him”, “my”, “whom”, “doing”, “who”, “should”, and
“very”. Then, the frequency of these words is calculated as
shown in Fig. 4. The histogram shows a high discrepancy in
the longest distance words’ frequency between the two classes
(two journals) such as “who”, “should”, and “whom”, that
means these words are most likely to appear in one journal
rather than the other.

In this surprising example, some differences are quite sig-
nificant and indicate that they can be used in determining the
classes of papers. Thus, some of them should not be eliminated
by simple traditional stop word removal.

F. Detect domain-specific words

Domain-specific words can be defined in this approach as
the words with the shortest distance from the hyperplane.
Therefore, the final step is to sort the words’ distances in
ascending order such that the words that have the shortest
distance from the hyperplane can be detected.

V. DATA SOURCES FOR EXPERIMENTS

We tested our approach on three datasets. These are chosen
to vary in size and complexity for testing the limitations of
the approach.

Hansard Speeches 1979–2018: This is a public dataset
of speeches from the UK House of Commons, extracted
from Hansard, the official public records [9]. This data set
includes the text for every speech made in the House of
Commons between the 1979 general election and the end
of 2017, with information for each speaker, including their
party affiliation. We reduce the set of speeches to speakers
from the two largest parties, Labour and Conservative. The
resulting dataset consists of 1,608,012 speeches. We picked
the Hansard Speeches because the baseline accuracy of the
classifiers applied to these data is much lower than the other
datasets, meaning the classification task is more difficult.

IMDB Movie Review Dataset: This is a dataset for binary
sentiment classification containing 50,000 positive and nega-
tive reviews [8].

Pubmed: The Pubmed dataset [7] provides public infor-
mation by the National Library of Medicine (NLM). It con-
tains more than 26 million citations for biomedical literature
from MEDLINE, life science journals, and online books. Our
knowledge base starts as XML files provided by Pubmed,
from which we extract each publication abstract, year, and
journal. In this work we focus on the journal abstracts, treating
journal names as the categories into which we categorize the
abstracts. To ensure higher quality in the word embeddings,
we only consider journals with at least 10,000 abstracts. From
these journals, many pairs were generated then tested using the
Logistic Regression classifier. The pairs that have an accuracy
lower than 98% were picked to efficiently test the proposed
approach. The curated dataset contains 100 pairs of journals
and 2,694,790 abstracts.

VI. VALIDATION EXPERIMENTS AND RESULTS

We conduct our experiments in two parts: First, the val-
idation of the proposed approach is studied on the classifi-
cation accuracy by eliminating three types of words: (1) the
words with the shortest distance from the hyperplane (domain-
specific words); (2) the words with the longest distance from
the hyperplane (distinguishable words); (3) random words.
Second, we compare the hyperplane-based approach against
two feature selection methods: χ2 and Mutual Information
(MI).
χ2 is used as a dimensionality reduction feature selection

method which evaluates the independence of the feature and
the class. The higher the χ2 value, the more class information
the feature contains. Mutual Information (MI) is another
dimensionality reduction feature selection method. MI is used
to measure the dependencies between two random variables,
which are class and feature. The higher the MI value, the
more information content exists between the feature and the
class. Accordingly, a low χ2 or MI value indicates that a word
is a domain-specific common word. The most distinguishable
words are those that have a high χ2 or MI. For our proposed
hyperplane method, domain-specific words are those that have
the shortest distance from the hyperplane.

Our experimental scheme is illustrated in Fig. 5. In this
study, 138 different sub-corpora from the Hansard speeches,
IMDB movie review, and Pubmed datasets are tested per
different feature selection methods, percentages of domain-
specific words elimination, and classifiers. For each feature
selection approach, 11 percentages of domain-specific words
are eliminated in increments of 10 from 0% to 99%. The 0%
is selected as a reference category because it represents the
performance of a classifier before any words are eliminated.

For each case, five classifiers are applied: Naive Bayes,
Thunder SVM, Logistic Regression, Random Forest, and
CART. The performance of a classifier is quantified by its pre-
diction accuracy, calculated as the ratio of correctly predicted
instances to all instances in the experiment, and estimated

Fig. 5. Experimental scheme

using 10-fold cross validation. Overall, we conduct a total of
37,950 experiments to test the hyperplane-based approach.

A. Hansard Speeches

The Hansard data spans the time period from 1979–2018.
We calculate the accuracy for all five classifiers, three feature
selection approaches, and 11 elimination percentages for each
year. We then calculate average accuracy across all years
included in our data. Hyperplane-based approach validation
starts with comparing the performance of the classifiers when
eliminating three criteria: the shortest distance, longest dis-
tance, and random words. Fig. 6 presents the average accuracy
of classifiers per each selection criterion. As expected the
highest accuracy is obtained when removing the domain-
specific words (shortest distance), and the lowest accuracy
when removing the distinguishable words (longest distance).
Also, when the percentage of distinguishable words elimina-
tion increases, accuracy drops significantly. The accuracy of
the classifiers when removing random words is in between
the accuracy when removing the shortest or longest distance
words. Additionally, we note that the accuracy of all classifiers
when eliminating from 10 to 90% of words will maintain
about the same level if not increase compared to the reference
category (0% elimination).

Fig. 7 presents the average accuracy of the classifiers
per hyperplane-based, χ2 and MI approach on the Hansard
Speeches dataset. The hyperplane-based approach improved
the average accuracy of the Naive Bayes classifier by 8%
(from 0.66 to 0.74) when eliminating 90% of domain-specific
words with respect to the reference category (0% elimination).
Further, our proposed approach outperforms the χ2 and MI ap-
proaches from 60% to 90% elimination. The average accuracy
of the Naive Bayes classifier increased at 99% elimination
with respect to the reference experiment in all approaches,
where the hyperplane-based approach had the same average
accuracy as the χ2 and higher than MI approach. The average

Fig. 6. Classifier performance on Hansard Speeches dataset when eliminating
different percentages of words based on three different criteria: shortest
distance from hyperplane, longest distance from hyperplane, and random word
elimination.

accuracy of the Random Forest classifier is increased by 2%,
and 3% when removing 90% of domain-specific words using
our proposed approach, and χ2 approach, respectively. MI, in
conrast, increased the Random Forest accuracy with less than
1%. The accuracy of other classifiers (Logistic Regression,
Thunder SVM, and CART) stay the same after any elimination
percentage. In the case of removing 90% of domain-specific
words, the χ2 approach and hyperplane-based enhanced the
accuracy of both Naive Bayes and Random Forest classifiers
compared with the reference experiment.

To further investigate the performance of our proposed
hyperplane-based approach, we break the estimation of ac-
curacy down by year instead of calculating the average across
years. Fig. 8 shows trends in accuracy for two classifiers, Naive
Bayes and Random Forest, for two elimination categories:
90% of domain-specific words vs 0% elimination (our refer-
ence category). We notice that the accuracy of both classifiers
using our hyperplane-based approach outperform the χ2 for
the years from 1980 to 1999, and outperforms MI for all
the years. Our approach further increases the performance of
Naive Bayes by 12% for the year 1992 from 0.64 to 0.76. For
Random Forest, our proposed approach increases the accuracy
by 4% in 1981.

Overall, the three approaches play a key role in reducing the
dimensionality of the corpus, which means reducing the exe-
cution time of the classification problem, and the hyperplane-
based approach achieved comparable results with χ2 and MI.
We demonstrate the impact of feature elimination on execution
time in Tables I. Table I presents the average execution time for
all years of the five classifiers per elimination percentage. We
can see from this table that when the percentage of elimination
increases, the drop in the average execution time increases
dramatically. We further compare the execution time for the

Fig. 7. Average classifier accuracy comparison on Hansard Speeches for all
the years, using three different approach: hyperplane-based, χ2 and MI by
eliminating different percentages of words starting from shortest to longest
distance from hyperplane, lowest to highest χ2 value and lowest to highest
mutual information.

Fig. 8. Classifier accuracy on Hansard Speeches dataset per year, using three
different approach: hyperplane-based, χ2, and MI by eliminating 90% of
words and keeping the words that have longest distance from hyperplane,
highest χ2 value and highest mutual information, and compare it with
classifiers accuracy before any elimination.

three elimination strategies hyperplane-based, χ2, and MI. We
find that the χ2 approach has the lowest execution time 8
seconds, while MI has the highest. Our approach outperforms
the MI, which only needs 152 seconds to generate the list of
words for each year, while MI needs 1743 seconds, more than
ten times longer.

Finally, we investigate the extent to which our approach
generates word lists that are different from those generated
by the two other approaches. To this end, we look at the
intersection of the word sets generated by the three approaches,

TABLE I
AVERAGE EXECUTION TIME FOR EACH CLASSIFIER IN SECONDS

Percentage of elimination NB LR RF SVM CART
0% 0.37 35 1296 733 533

10% 0.36 31 1260 686 525
20% 0.35 28 1191 661 521
30% 0.33 26 1127 643 506
40% 0.33 24 1099 626 502
50% 0.31 22 1034 611 488
60% 0.29 21 989 602 480
70% 0.28 19 977 589 477
80% 0.27 18 946 575 475
90% 0.25 15 830 556 448
99% 0.09 4 565 213 77

Fig. 9. Intersection between Hyperplane-based approach with the χ2 and MI
approach against the range of elimination percentages.

comparing our method against the other two for different
percentage categories of elimination – see Fig. 9. The intersec-
tion is defined by the percentage of identical words between
two approaches that remain after elimination, divided by the
total number of remaining words after elimination. Fig. 9
shows that the overlap between the methodologies is not high
when eliminate 99% of words, which means our hyperplane-
based approach extracts words that are different from those
extracted by the other two approaches, while maintaining the
same accuracy. We present sample of the words that used
to distinguish between two classes after eliminating 99% of
words in Table II. We present examples of the remaining
words after eliminating 99% of words per approach for the
year 1980. These are the words with the largest distance from
the hyperplane, highest χ2, and highest MI.

TABLE II
PRESENTS WORDS FROM HANSARD SPEECHES DATASET FOR THE YEAR
1980 THAT ARE DEEMED MOST IMPORTANT BY THE HYPERPLANE, χ2 ,

AND MUTUAL INFORMATION

Hyperplane words χ2 MI words
sparkbrook minister not
disservice friend for
benchers secretary hon
dispatch state and
duchy he is
sidcup you in

engagements state that
orme conservative to

mislead she of

Fig. 10. Classifiers performance on IMDB movie review dataset by elimi-
nating different percentage of words that have shortest, longest distance from
hyperplane and by eliminating random words.

B. IMDB Movie Review Dataset

The accuracy of the five classifiers with respect to the range
elimination percentages for the shortest distance, longest dis-
tance, and random words estimated from this dataset show the
same trend as the Hansard Speeches dataset, as is illustrated
in Fig. 10. Fig. 11 shows the classifier performance of testing
the IMDB movie review dataset for the hyperplane-based
approach and the two feature selection methods using five clas-
sifiers. It can be noticed that the accuracy for the Naive Bayes
and Thunder SVM classifiers are improved by using the three
approaches when eliminating 90% of words. The hyperplane-
based approach performs better than the MI approach when
eliminating 90% of the domain-specific words under Naive
Bayes. The χ2 is slightly higher than the hyperplane-based
approach and the MI at all elimination percentages under
Naive Bayes. The accuracy of the other classifiers (Logistic
Regression, Random Forest, and CART) is stable before and
after eliminating 90% of words using all approaches.

When removing 99% of domain-specific words, only χ2

maintains the same accuracy, while the performance of the
other two approaches drops. We note that the drop in per-
formance cannot be explained by the small number of data
points at this elimination level alone. After eliminating 99%
of the words, there are 2,221 words remaining, with an average
of 45-80 words per review, depending on which approach is
being used, which should be enough distinguishable words
to classify the data. As such, the drop in performance is a
shortcoming of the two methods, though only at this high level
of word elimination.

The intersection of the remaining words between the pro-
posed approach with the χ2 and MI approach against the
range of elimination show the same trend as we observed in
the Hansard Speeches dataset, which is illustrated in Fig. 12.

Fig. 11. Classifier performance comparison on IMDB movie review dataset
using three different approach: hyperplane-based, χ2 and MI by eliminating
different percentages of words starting from shortest to longest distance
from hyperplane, lowest to highest χ2 value and lowest to highest mutual
information.

Fig. 12. Intersection between Hyperplane-based approach with the χ2 and
MI approach against the range of elimination percentages.

We also again present examples of the remaining words after
eliminating 99% in Table III.

TABLE III
PRESENTS WORDS FROM IMDB MOVIE REVIEW DATASET THAT ARE
DEEMED MOST IMPORTANT BY THE HYPERPLANE, χ2 , AND MUTUAL

INFORMATION

Hyperplane words χ2 words MI words
waste bad the

renting worst and
crap waste of

stupid awful to
suck great this

bother terrible is
unwatchable horrible in

pile excellent It

C. Pubmed

The curated Pubmed dataset includes abstracts from 100
pairs of different journals. For each pair, the accuracy of all

Fig. 13. Classifiers performance on 100 pairs of Pubmed dataset by elimi-
nating different percentage of words that have shortest, longest distance from
hyperplane and by eliminating random words

classifiers is calculated per all elimination percentages. Then,
the average accuracy for all pairs is calculated and presented.
Fig. 14 presents the average accuracy of the five classifiers
with respect to the range of elimination percentages for the
shortest distance, longest distance, and random words to the
Pubmed dataset have the same trend to the Hansard Speeches
dataset and the IMDB movie review dataset.

Fig. 14 shows the average classifier accuracy of testing
the 100 pairs of Pubmed dataset for the hyperplane-based
and two feature selection methods and five classifiers. The
classifying accuracy for the Naive Bayes is improved by using
the hyperplane-based and χ2. The hyperplane-based approach
outperforms the MI approach when eliminating 90% of the
domain-specific words for Naive Bayes, Logistic Regression
and Thunder SVM. The accuracy of the other classifiers (Ran-
dom Forest, and CART) is stable before and after eliminating
90% of words using all approaches.

We present the intersection of the remaining words between
the proposed approach with the χ2 and MI approach against
the range of elimination on one pair, Cell and Journal of
Prosthetic Dentistry, in Fig. 15. We find that the intersections
have the same trend as those observed on the two other
datasets. We present a sample of the remaining words after
eliminating 99% of words in Table IV.

TABLE IV
PRESENTS WORDS OF THE CELL AND JOURNAL OF PROSTHETIC
DENTISTRY FROM PUBMED DATASET THAT ARE DEEMED MOST

IMPORTANT BY THE HYPERPLANE, χ2 , AND MUTUAL INFORMATION

Hyper plane words χ2 words MI words
computeraided denture the

restorations cell of
provisional we and

castings dental in
impressions implant to

crowns resin that
fabrication teeth is

Fig. 14. Classifier performance comparison on 100 pairs of Pubmed datasets
using three different approach: hyperplane-based, χ2 and MI by eliminating
different percentages of words starting from shortest to longest distance
from hyperplane, lowest to highest χ2 value and lowest to highest mutual
information

Fig. 15. Intersection between Hyperplane-based aproach with the χ2 and MI
approach against the range of elimination percentages.

VII. CONCLUSION

This study proposed a novel mathematical approach for
detecting domain-specific words called the Hyperplane-based
approach. This new approach depends on the notion of low
dimensional representation of the word in vector space and
its distance from the hyperplane, where the domain-specific
words are defined as the words with the shortest distance
from the separating hyperplane. The performance of the
proposed approach is quantified by the accuracy and the
execution time of five classifiers: (1) Naive Bayes, (2) Random
Forest, (3) Logistic Regression, (4) Thunder SVM, and (5)
CART. This approach is validated using 138 sub-corpora from
three datasets (Hansard Speeches, IMDB Movie Review, and
Pubmed). Also, it is compared with two feature selection
approaches, namely χ2 and MI. For each feature selection
method including the hyperplane-based approach and each
corpus, various word elimination percentages are considered to
find the optimal elimination percentage for each classifier and

approach. The hyperplane-based approach generally improves
the performance of the classifier and it achieved comparable
performance with the χ2 and MI. However, our experiments
indicate that qualitatively the eliminated words significantly
differ from other approaches. In addition, the method is
more robust to the erroneous elimination of important words.
The performance of our approach varies with respect to the
classifier and the elimination percentages. For example, the
Naive Bayes classifier presented the best improvement of
accuracy before and after the elimination using our approach,
and the optimal elimination percentage per our approach is
90% for all datasets. Finally, the proposed approach plays
a key role in reducing the dimensionality of the corpus,
which means reducing the classification execution time. The
implementation of the hyperplane-based approach in different
datasets is straight-forward and merging the hyperplane based-
domain words with other feature selection domain words
is a future research recommendation. Reproducibility: code
and results can be found at https://github.com/FarahAlshanik/
Domain-Specific-Word-List

ACKNOWLEDGEMENTS: This research has been supported by
NSF grants #1405767, #2027864 and #1725573.

REFERENCES

[1] F. Zou, F. L. Wang, X. Deng, S. Han, and L. S. Wang, “Automatic
construction of chinese stop word list,” in Proceedings of the 5th WSEAS
international conference on Applied computer science, 2006, pp. 1010–
1015.

[2] T. Y. Chong, R. E. Banchs, and E. S. Chng, “An empirical evaluation of
stop word removal in statistical machine translation,” in Proceedings
of the Joint Workshop on Exploiting Synergies between Information
Retrieval and Machine Translation (ESIRMT) and Hybrid Approaches
to Machine Translation (HyTra), 2012, pp. 30–37.

[3] V. Jha, N. Manjunath, P. D. Shenoy, and K. Venugopal, “Hsra: Hindi
stopword removal algorithm,” in 2016 international conference on
microelectronics, computing and communications (MicroCom). IEEE,
2016, pp. 1–5.

[4] T. C. Bell, J. G. Cleary, and I. H. Witten, Text compression. Prentice-
Hall, Inc., 1990.

[5] N. Avudaiappan, A. Herzog, S. Kadam, Y. Du, J. Thatche, and I. Safro,
“Detecting and summarizing emergent events in microblogs and social
media streams by dynamic centralities,” in 2017 IEEE International
Conference on Big Data (Big Data). IEEE, 2017, pp. 1627–1634.

[6] C. Gropp, A. Herzog, I. Safro, P. W. Wilson, and A. W. Apon,
“Clustered latent Dirichlet allocation for scientific discovery,” in 2019
IEEE International Conference on Big Data (Big Data), 2019, pp. 4503–
4511.

[7] 2016. PubMed. (2016). https://www.ncbi.nlm.nih.gov/pubmed/.
[8] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,

“Learning word vectors for sentiment analysis,” in Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon, USA: Association
for Computational Linguistics, June 2011, pp. 142–150. [Online].
Available: http://www.aclweb.org/anthology/P11-1015

[9] E. Odell, “Hansard Speeches V2.6.0 [dataset].” [Online]. Available:
https://evanodell.com/projects/datasets/hansard-data/

[10] J. Kaur and P. K. Buttar, “A systematic review on stopword removal
algorithms,” Int. J. Futur. Revolut. Comput. Sci. Commun. Eng, vol. 4,
no. 4, 2018.

[11] M. P. Sinka and D. W. Corne, “Towards modernised and web-specific
stoplists for web document analysis,” in Proceedings IEEE/WIC Inter-
national Conference on Web Intelligence (WI 2003), 2003, pp. 396–402.

[12] U. Garg, V. Goyal, U. Garg, and V. Goyal, “Effect of stop word removal
on document similarity for hindi text,” An Int. Jounal Eng. Sci., vol. 2,
no. December, 2014.

[13] V. Gupta and G. S. Lehal, “Preprocessing phase of punjabi language text
summarization,” in International Conference on Information Systems for
Indian Languages. Springer, 2011, pp. 250–253.

[14] R. Puri, R. Bedi, and V. Goyal, “Automated stopwords identification in
punjabi documents,” An Int. J. Eng. Sci., vol. 8, no. June, pp. 119–125,
2013.

[15] G. Zheng and G. Gaowa, “A comparative study on between mongolian
stop words and english stop words,” Journal of chinese information
processing, vol. 4, pp. 35–38, 2011.

[16] R. Rani and D. Lobiyal, “Automatic construction of generic stop words
list for hindi text,” Procedia computer science, vol. 132, pp. 362–370,
2018.

[17] S. G. Miretie and V. Khedkar, “Automatic generation of stopwords in
the amharic text,” International Journal of Computer Applications, vol.
975, p. 8887, 2018.

[18] F. Zou, F. L. Wang, X. Deng, S. Han, and L. S. Wang, “Stop word list
construction and application in chinese language processing,” WSEAS
Transactions on Information Science and Applications, vol. 3, no. 6, pp.
1036–1044, 2006.

[19] A. Alajmi, E. Saad, and R. Darwish, “Toward an arabic stop-words list
generation,” International Journal of Computer Applications, vol. 46,
no. 8, pp. 8–13, 2012.

[20] R. T.-W. Lo, B. He, and I. Ounis, “Automatically building a stopword
list for an information retrieval system,” in Journal on Digital Informa-
tion Management: Special Issue on the 5th Dutch-Belgian Information
Retrieval Workshop (DIR), vol. 5, 2005, pp. 17–24.

[21] J. K. Raulji and J. R. Saini, “Stop-word removal algorithm and its im-
plementation for sanskrit language,” International Journal of Computer
Applications, vol. 150, no. 2, pp. 15–17, 2016.

[22] R. M. Rakholia and J. R. Saini, “A rule-based approach to identify stop
words for gujarati language,” in Proceedings of the 5th International
Conference on Frontiers in Intelligent Computing: Theory and Applica-
tions. Springer, 2017, pp. 797–806.

[23] L. Hao and L. Hao, “Automatic identification of stop words in chinese
text classification,” in 2008 International Conference on Computer
Science and Software Engineering, vol. 1, 2008, pp. 718–722.

[24] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continu-
ous space word representations,” in Proceedings of the 2013 conference
of the north american chapter of the association for computational
linguistics: Human language technologies, 2013, pp. 746–751.

[25] D. D. Lewis, “Naive (bayes) at forty: The independence assumption
in information retrieval,” in European conference on machine learning.
Springer, 1998, pp. 4–15.

[26] E. Sadrfaridpour, T. Razzaghi, and I. Safro, “Engineering fast multilevel
support vector machines,” Machine Learning, vol. 108, no. 11, pp. 1879–
1917, 2019.

[27] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” Journal of Machine Learning Research,
vol. 19, pp. 797–801, 2018.

[28] J. Lever, M. Krzywinski, and N. Altman, “Logistic regression,” 2016.
[29] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international

conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

[30] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

https://github.com/FarahAlshanik/Domain-Specific-Word-List
https://github.com/FarahAlshanik/Domain-Specific-Word-List
https://www.ncbi.nlm.nih.gov/pubmed/
http://www.aclweb.org/anthology/P11-1015
https://evanodell.com/projects/datasets/hansard-data/

