
Addressing the Challenges of Executing a Massive
Computational Cluster in the Cloud

Brandon Posey
Clemson University

bposey@clemson.edu

Christopher Gropp
Clemson University

cgropp@clemson.edu

Boyd Wilson
Omnibond

boydw@omnibond.com

Boyd McGeachie
Amazon Web Services
boydm@amazon.com

Sanjay Padhi
Amazon Web Services

sanpadhi@amazon.com

Alexander Herzog
Clemson University

aherzog@clemson.edu

Amy Apon
Clemson University
aapon@clemson.edu

Abstract—A major limitation for time-to-science can be the
lack of available computing resources. Depending on the capacity
of resources, executing an application suite with hundreds of
thousands of jobs can take weeks when resources are in high
demand. We describe how we dynamically provision a large scale
high performance computing cluster of more than one million
cores utilizing Amazon Web Services (AWS). We discuss the
trade-offs, challenges, and solutions associated with creating such
a large scale cluster with commercial cloud resources. We utilize
our large scale cluster to study a parameter sweep workflow
composed of message-passing parallel topic modeling jobs on
multiple datasets. At peak, we achieve a simultaneous core count
of 1,119,196 vCPUs across nearly 50,000 instances, and are able
to execute almost half a million jobs within two hours utilizing
AWS Spot Instances in a single AWS region. Our solutions to the
challenges and trade-offs have broad application to the lifecycle
management of similar clusters on other commercial clouds.

Index Terms—high performance computing cluster, parallel
scientific applications, automatic resource provisioning and de-
provisioning, massive scale workflow, cloud computing

I. INTRODUCTION AND MOTIVATION

There are many different high performance computing
(HPC) environments available to researchers today, including
campus-scale clusters at academic institutions and supercom-
puting resources at national centers. However, the size of
most academic resources and contention for access to the
resources even at national supercomputing centers limit the
availability of the systems to individual researchers. This lim-
itation can slow the time-to-science for researchers who have
an infrequent or urgent need to access large scale resources.
For example, the computation required to predict or manage
a natural disaster such as a hurricane may be much larger
than the normal workload that is processed by the available
institutional resources.

While HPC workloads are generally tightly coupled and
depend on low latency networks, a high throughput compu-
tational (HTC) workload generally consists of independent
programs that rely less on low-latency messaging. These HTC
workflows can contain a large number of individual jobs that
run independently of other jobs in the suite. Our particular
HTC workload executes a suite of jobs, each with modest
parallelism that executes on a single whole computer, that

collectively evaluate a large range of parameters to a given
modeling application. Acquiring enough resources to run a
massive HTC workflow in a fixed turn-around time on tradi-
tional HPC resources can be difficult. One limitation may be
the physical size or availability of computing, networking, and
computing resources. Other limitations include administrative
limits such as how many jobs can be submitted to a scheduler
at one time by a single user, or how many jobs a single user
is permitted to run during a given time period. When too few
resources are available, the number of HTC jobs that can run
simultaneously is decreased, leading to a longer completion
time for the whole suite and delay in producing the desired
computational results. When an HTC suite is massive, say,
consisting of tens of thousands of jobs, a researcher could
wait weeks for enough jobs to complete to get a usable result.
Decreasing this processing delay for massive sized workloads
is one of the main motivations for this research. This wait time
limits the number of science questions that can be studied,
slows the pace of scientific discovery, and can even be the
critical difference between a result that arrives in time to help
manage a disaster versus one that comes too late to help.

The increasing capability and elasticity of the commercial
cloud provides a solution to this problem. Computing re-
sources through commercial cloud providers such as Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP) are growing and maturing rapidly. According
to Forrester, in 2018 the global public cloud market will grow
at a 22% compound annual growth rate [1]. The allure of “un-
limited” resources, the ability to have complete control over
administrative policies of the environment, and the increasing
variety of compute hardware offered by the commercial cloud
can help to solve many of the issues currently faced when
attempting to run HTC workflows of parallel applications.
However, the challenges with dynamically provisioning tra-
ditional HPC-type environments at a massive scale on a
commercial cloud have not been well studied.

In this study, we aimed to automatically provision and de-
provision an environment large enough to push the limits of
computation in the commercial cloud and to provide insight
into the challenges and solutions when constructing such an

environment. At the time of the study, the 1.1 million core
HPC cluster that we provisioned in the cloud had more cores
than all but three of the Top 500 largest supercomputers
in the world, and was about forty-seven times larger than
the number of cores available on the Clemson University
campus cluster [2]. The HTC workflow that ran in less than an
afternoon would have taken more than five days of dedicated
access to the campus cluster. However, since the campus
cluster is shared by Clemson users and has a typical utilization
of about 90%, dedicated access to the system is not feasible.
In the best case, our HTC workload would have taken weeks
to execute. We pushed the limits of the commercial cloud to
obtain useful scientific results much faster than is otherwise
possible. We present in this paper the challenges, scalability,
and job processing efficiency we can achieve with a fully
cloud-based cluster environment.

The remainder of this paper is organized as follows. Sec-
tion II discusses other research that has been performed in
this area. Section III contains the technology background,
including a discussion of the alternatives to the tools utilized
in this experiment. Section IV discusses the limitations to
scaling. Section V discusses the workload characteristics of
the scientific application. Section VI discusses the execution
and evaluation of the HTC workflow that we executed. Section
VII describes conclusions and future work.

II. RELATED RESEARCH

Prior research related to this project has focused largely
on the performance of specific applications in the commercial
cloud or on the usability of the commercial cloud for sci-
entific applications. Performance studies of HPC applications
in the cloud typically compare different benchmarks or test
applications to determine how best they can execute in the
cloud [3]–[7]. Results have shown that the commercial cloud
networking and virtualization overheads limit the effectiveness
of the cloud for many HPC applications. These results led
to a number of studies that sought to optimize various HPC
applications in a cloud execution environment, such as [8],
[9]. Other research has studied which types of applications
and programming models are best suited for the cloud [10],
[11]. The scale of these applications has been modest by our
standards, ranging from a few nodes to a few thousand whole
computing instances (i.e., nodes) in total. At peak, we achieved
a simultaneous core count of 1,119,196 vCPUs across 49,925
instances, and executed almost half a million jobs within two
hours utilizing AWS Spot Instances in a single AWS region.

Another area of research has centered around the usability of
the cloud for scientific applications. Studies such as [12], [13]
discuss the need for a simple usable cloud solution for running
applications in the cloud. A study in the area of high energy
physics [14] describes a hybrid deployment/cloud bursting
model that enables high-energy physics users to utilize cloud
resources in combination with local resources.

The largest scale HTC or HPC job that has been executed
on a commercial cloud and publicized at the time of this
article was an HTC job that was designed to execute a single

workflow on the Google Cloud Platform (GCP) [15]. At
its peak size it utilized 580,000 cores simultaneously. This
suite of jobs executed using a work queue model in which
the compute resources receive work from a queue master,
similar to [16]. All the instances utilized operated as separate
entities, the tasks operated on one instance, and instances were
spread over multiple GCP regions. The submission tools uti-
lized in that experiment were different from typical scientific
computing environments. In comparison, our experiment uses
a traditional scientific computing environment containing a
traditional HPC batch scheduler. It supports the execution of a
wide variety of parallel applications, including Message Pass-
ing Interface (MPI) applications across multiple nodes. The
instances resided in a single AWS region. The environment
uses SLURM [17], a widely used HPC batch scheduler, which
allows the execution of any workflow designed to work with
SLURM, with only minor modifications.

III. TECHNOLOGY ALTERNATIVES AND DESIGN
DECISIONS

In this section we examine various technology alternatives
and design decisions that are required when considering how
to provision a massive cluster in the commercial cloud.
Decisions include choosing a particular commercial cloud
provider, determining the cost model for the experiment, and
determining how to manage the workflow at such a large scale.
Also, the characteristics of the workload constrain the viable
design choices for the cluster environment.

Our experimental workload consists of many small, parallel
jobs. Unlike large jobs, small-scale parallel jobs are less
reliant on networking capabilities and have different reliability
considerations than larger parallel jobs. Small parallel jobs can
more easily be located on one or two large computing nodes
and can also be more easily replicated, or even restarted, in
the case of node failures. Larger scale parallel jobs are not
considered in this evaluation. An MPI application will impose
constraints on the number of cores that are required. Our MPI-
based application can run efficiently on most numbers of cores,
and we do not consider jobs that require GPUs. Also, our HTC
workload has features that enable efficient resource use. For
example, sets of jobs are able to reuse input files or partial
results, and the parameters file is small enough that parameters
for all jobs can be loaded into a single machine image.

A. Which Commercial Cloud?

We considered the three largest commercial cloud providers,
AWS, GCP, and Microsoft Azure, each offering a variety of
different services, and each with advantages and disadvan-
tages. Providers differ in areas of pricing structure, availability
of resources, and the available tools and APIs, and these
features are constantly updated. A summary of key features
available at the time of the experiment is shown in Table I.

The pricing structure of the resources does not vary signifi-
cantly between the different providers. AWS and GCP perform
instance level billing at the second level with a one minute
minimum charge [18], [20] while Azure charges at the minute

level for each instance [21]. Prices at the per second level can
greatly reduce costs when running at a very large scale.

The cost of compute instances within each commercial
cloud is a key factor. One cost management feature is the “Spot
Instance” concept within AWS and the “Preemptible Instance”
concept within GCP. AWS Spot Instances allow users to bid on
spare Amazon EC2 computing capacity, which can result in
discounts of between 50-90% from the standard on-demand
price [22]. This can help control costs with the caveat that
the instance can be terminated by AWS at any time, with a
two minute warning. Another AWS feature that utilizes Spot
pricing is AWS Spot Fleet, which allows users to manage a
collection of Spot Instances with a single request. Spot Fleets
allow the user to set a target capacity and will automatically
attempt to launch Spot Instances to fulfill this capacity. Spot
Fleets can also attempt to maintain the target capacity if some
of the initial Spot Instances are terminated [23].

GCP has a feature called “Preemptible Instances” that are
similar to AWS Spot instances. With GCP, users can obtain
preemptible instances at a discount of up to 80% of the
standard pricing. GCP users do not bid on the capacity and
the discount is fixed at the price set by Google [24]. GCP
preemptible instances can be terminated at any time, however
there is a reduced probability of termination as the instance
runtime increases. At the time of this writing, Azure does not
have a comparable feature available for general use. GCP also
allows users to define machine type with custom vCPUs and
memory. This flexibility allows more control over the hardware
requirements and costs of instances.

All three cloud providers have software solutions that can
dynamically create an HPC environment within the cloud. We
chose to utilize an existing software solution (described further
below) in order to eliminate unnecessary development time
and costs, and to focus on the scaling challenges.

We selected AWS for the implementation. At the time of
the study we found that AWS offered the most effective cost-
saving options for a run of this size and had the largest
selection of off-the-shelf provisioning tools. The ability to
specify the prices we were willing to pay via Spot instances
provided more flexibility then the set prices of GCP’s pre-
emptible instances. Collaboration between our group and AWS
associates were key enablers of the project. The partnership
provided the team with more insight into the underlying
infrastructure than would have been possible otherwise, and
aided in finding potential bottlenecks in the deployment. In
addition, AWS places default limits on the count of resources
that can be provisioned. These limits are designed to help users
to not exceed their own budgets as well as to provide some
level of resource protection for the cloud. The collaboration
facilitated raising of these limits during the study, as described
in Section IV.

B. Which HPC Environment Provisioning and Workflow Man-
agement Tool?

Scaling to a massive size requires management of the
lifecycle of the HPC resources in the cloud, and management

TABLE I
COMPARISON OF COMMERCIAL CLOUDS AS OF AUGUST 17, 2017

AWS GCP Azure
Reference [19] [20] [21]
Worldwide Availability X X X
“Spot” Type Instances X (X)† -
Biddable “Spot” Instances X - -
“Spot” Fleet Provisioning X - -
Custom Instance Types - X -
Per Second Billing X X -
HPC Environment Tools X X X
Notes:† GCP’s “Preemptible” instances are similar to AWS’s “Spot”
instances.

of the scientific workflow that executes on these resources.
In this study we leverage our prior work with the Automated
Provisioning And Workflow Management tool (PAW) [12] that
evaluated alternatives and developed infrastructure software to
support both of these management tasks.

PAW is a comprehensive resource provisioning and work-
flow tool that automates the steps of dynamically provisioning
a large scale cluster environment, running and executing
user defined workflows, and de-provisioning of the cluster
environment, as desired. The PAW software system launches
the HPC environments with a single command, automatically
performing the two key management tasks, with (optionally)
no further interaction from the user. PAW is built to be
modular, extensible, and workflow-agnostic, which allows the
execution of any type of workflow on the provisioned HPC
environment. PAW does not require the use of a specific
workflow management tool. The use of PAW accelerated the
testing and development of the large environment as well
as the workflow itself. Without PAW, performing the scaling
tests would have been difficult and tedious. Here we push the
limits of PAW to provision environments much larger than in
previous work and test the scalability of the software.

We used an implementation of PAW that utilizes Cloudy-
Cluster [25] and CloudyCluster Queue (CCQ) [26] to manage
the provisioning and de-provisioning of the HPC environ-
ment and to enable job-based autoscaling. The job-based
autoscaling allows for the required computational resources
to be provisioned dynamically when the job is submitted
and dynamically de-provisioned when the job has completed.
Prior to developing PAW we considered different existing
tools for provisioning HPC environments in the commercial
cloud. These tools included CfnCluster [27], CloudyCluster
[25], [28], and Alces Flight Community Edition [29].

Typically, provisioning tools only manage the provisioning
of the resources and another tool is required for workflow man-
agement. There are a number of existing workflow managers,
such as Tigres [30], FireWorks [31], QDO [32], SWIFT [33],
and Pegasus [34] that can be used to manage the workflow
in combination with PAW or one of the other provisioning
tools. However, the development of the interfaces would still
have been required, and there would have been management
overhead due to the use of different tool interfaces. PAW
utilizes CCQ and a robust configuration file interpreter for
workflow management. For more information about the design

choices in PAW, see [12].

C. What Autoscaling Model?

AWS Spot Fleets were used to provision the compute nodes
of our environment. We also considered the AWS Autoscaling
service with Spot Instances. However, a Spot Autoscaling
group can only use one AWS instance type per group, whereas
AWS Spot Fleet can utilize multiple AWS instance types
within a single fleet, depending on the Spot Bid Price and
“weight” specified. If the price of the requested instance type
in a Spot Autoscaling group spikes before all instances are
allocated, the group may not reach its target capacity. Spot
Fleets are protected from such a price spike for a given
instance type by allowing use of other instance types when the
price rises above a set threshold. While this capability could
be created using multiple Spot Autoscaling groups, it would
require more management and more API calls than utilizing
a single Spot Fleet. Using multiple Spot Autoscaling groups
can also cause an over or under provisioning of instances as
the capacities are set per group. Due to these characteristics,
Spot Fleets are a better choice for our implementation.

IV. LIMITATIONS TO SCALING

Our research has identified and resolved a number of
limitations to massive scaling in the cloud. Several of these
limitations are common to execution on all commercial clouds,
including those of a shared filesystem, network limitations
such as NAT instances, launching of heterogeneous instance
types to control costs, HPC scheduler stability, cloud vendor
user limits, and API limits. A limitation that may be specific
to AWS is the dynamic pricing effect on the Spot market. A
summary of these limitations and our solutions can be found
in Table II. Details are described in this section.

To identify and resolve the scaling limitations, we developed
a plan for experimental testing at increasingly larger scales,
beginning with a modest test of 1% of our goal, or 10,000
vCPUs. Medium-sized experiments of 5,000 instances in a
single environment were designed to test the limitations of
the scheduler and provisioning software and other limitations.
Note that a system of this size is comparable to many campus-
scale computing clusters. Successful resolution of problems
within a single environment laid the groundwork for the simul-
taneous execution of multiple 5,000-instance environments.

A. Shared Filesystem Challenges

The CloudyCluster component in PAW creates a shared
filesystem within the provisioned HPC environment that is
mounted across all of the compute instances. However, glob-
ally shared filesystems, both in the cloud and on-premise, are
known to not scale well in general [35].

Our scientific HTC workflow was originally designed to
dynamically generate the analysis jobs based on a specified
configuration file, and each of these generated jobs required
specific data that was located on the shared filesystem. Without
access to the data in the shared filesystem the workflow could
not execute. Our massive scale environment contains hundreds

of thousands of compute jobs that could bring down even a
robust shared filesystem when all jobs require access to the
filesystem at the same time.

To address this problem we implemented and tested multiple
different solutions. Our first try was to create a version of the
workflow that submitted a parent job that copied the dataset
to a local scratch filesystem, generated the analysis job files,
tarred the resulting directories, and uploaded the tar file to
Amazon S3. Amazon S3 is an object store service that is built
to store and retrieve any amount of data from anywhere. S3 is
designed to be highly scalable and access to S3 is integrated
into CloudyCluster. S3 is available globally, which enables
access across all Amazon regions, if needed.

In this solution, when each compute instance was assigned
a job, it would copy the tar file from S3 to local instance
store, extract it, and then proceed to run the scientific appli-
cation. This avoids utilizing a shared filesystem while also
maintaining the dynamic nature of the workflow. It also still
allowed changing the data used by each job and the dynamic
creation of the analysis jobs. This solution worked well for
the modest scale tests of a few hundred instances. However,
issues with accessing the same file were discovered with
the medium 5,000-instance tests. As multiple thousands of
compute instances tried to copy the same file from S3 to the
local instance, the time to do this increased, and most of the
copy processes eventually timed out, causing jobs to fail.

Our second implemented approach was to upload multiple
copies of the data to S3 so that different instances could
copy different objects from S3, which reduced the load on a
single object. Implementing and testing this solution reduced
the number of timeouts but did not eliminate them, which
pointed to a different problem – limitations in the network
infrastructure to access S3 by our application at massive scale.

B. NAT Instance Limitations

Our analysis determined that the timeouts in accessing S3
were due to the use of a Network Address Translation (NAT)
instance. The networks that AWS utilizes for EC2 instances
are called Virtual Private Clouds (VPCs) and are private
by default. In order to communicate with servers or other
AWS services, network address translation using, say, a NAT
instance, is required. CloudyCluster handles this setup for the
user by dynamically creating a NAT instance to perform these
tasks. However, the very large number of instances in the VPC
was exceeding the throughput capacity of our NAT instance,
which was limiting our download speeds from S3.

We initially identified two different approaches to solving
this issue: implement an Amazon NAT Gateway, or implement
Amazon VPC Endpoints. An Amazon NAT Gateway is a
managed service from AWS that handles the NAT operations
without the need for a dedicated NAT instance. It supports
burst of up to 10Gbps of bandwidth. There is a charge for
creating a NAT Gateway and an additional cost that depends
on the amount of data that is processed by the NAT Gateway
which can add up quickly if transferring large amounts of data.
In order to avoid this processing charge, AWS recommends

TABLE II
SCALING LIMITATIONS AND SOLUTIONS

Limitation Solution
Shared Filesystem Scaling Build a tar file with the dataset and experiment files and upload it to Amazon S3.
NAT Limitations Put the data on the image to reduce traffic to the NAT Instance.
Dynamic Pricing Effects On Spot Prices Utilize the Diversified Spot Fleet allocation
Heterogeneous Instance Types With Spot Create “classes” of Spot Fleets to launch containing instances with similar characteristics
Scheduler Scalability Eliminated unnecessary reboots of the SLURM scheduler when adding compute instances.
User Limits Request limit increases
API Limits Slow down the launching of new Spot Fleets and turn off unnecessary monitoring

that the user set up VPC Endpoints if the data is being
transferred to other supported AWS services [36]. Hence, we
decided to utilize the VPC Endpoint feature instead of the
NAT Gateway solution.

VPC Endpoints allow resources within an Amazon VPC
access to certain AWS resources without having to go through
the NAT process. With the implementation of VPC Endpoints
we were able to obtain increased download speeds and did not
experience any timeouts. This solved the problem at a moder-
ate scale, but additional testing was needed to further validate
the effectiveness of upload and download to S3 at the scale
required. Due to time constraints we were unable to evaluate
our download/upload solutions utilizing VPC Endpoints at the
massive scale we required.

The inability to fully evaluate our VPC Endpoint solution
led us to implement another solution for the final experi-
ment. Our final, implemented solution was to pre-generate
the required datasets and experiment files and build them
into the machine image that the compute instances used. This
solution solved the network limitations of the copy, and also
reduced the chance of failure when running the massive scale
environment.

C. Dynamic Pricing Effects On The Spot Market

Our original Spot Fleet configuration in the initial modest-
scale tests utilized the LowestPrice allocation strategy, which
is set by the Amazon API to be the default strategy. In this
mode, the Spot Fleet launches Spot Instances into the Spot
Pool that has the lowest Spot Price [23]. During testing we
observed scenarios in which the number of instances launching
leveled out for a few minutes before increasing. Examination
of the Spot pricing during the tests revealed the reason.
Amazon Spot pricing changes based upon supply and demand
[22], and by requesting all of our Spot Instances in the same
pool, we were increasing the demand and driving the Spot
Price up. Once the Spot Price reached our maximum bid price
(i.e., the maximum amount we were willing to pay for a Spot
Instance), our new Spot Instance requests would fail to launch
because our maximum bid price was below the current Spot
Price. However, the Spot Fleet would still attempt to launch
more instances in the same Spot Pool for a few minutes until
it reached a maximum of failed attempts. It would then move
on to the Spot Pool with the next lowest price, which caused
a delay in the launch of instances.

We identified the Diversified allocation method as a solu-
tion. This is not the default option. The Diversified provision-

ing method attempts to diversify where the Spot Fleet bids
on the Spot Instances by launching groups of Spot Instances
into each Spot Pool, as specified in the request [23]. Along
with increasing the efficiency of the instance creation, this
also helps to keep the price down in each Spot Pool by
spreading out the Spot Instances into different Spot Pools.
The Diversified allocation method helps to avoid driving up
the price for a single Spot Pool, which at massive scale can
be significant. If the average price for each Spot Instance is
lower, the total cost will be lower.

D. Heterogeneous Instance Types With Spot Allocations

A Spot Fleet is defined by a target capacity that is the
total number of capacity units desired. The provisioning of
one million vCPUs requires tens of thousands of compute
instances. However, a limit on Spot Fleet requests prevents
specifying target capacity of more than 3,000 capacity units
per fleet. This posed a challenge as a limit of 3,000 instances
in a fleet requires management of an excessive number of Spot
Fleets and is a limitation to scalability.

The Spot Weight parameters define the number of capacity
units represented by a single Spot Instance type [23]. AWS
supports two default modes for Spot Weights: Instance mode
and vCPU mode. The Instance mode sets the Spot Weight
for each specified instance type to 1. In this mode, the total
capacity describes the total number of Spot Instances desired
in the Spot Fleet. The vCPU mode sets the Spot Weight for
each specified instance type to the number of vCPUs of the
instance type. In the vCPUs mode the total capacity specifies
the total number of vCPUs desired in the Spot Fleet. Since
each EC2 Instance contains a different number of vCPUs,
some instances count for more capacity units than others.
However, these default Spot Fleet Weights do not work for a
massive-scale environment. An alternative approach is needed.

A key observation is that Spot Fleet Weights can be a
fractional value less than 1.0. The effect of fractional Spot
Fleet Weights is shown in Table III. Using vCPU mode and a
capacity of 3,000, the total instances per fleet is just 83. But
a Spot Fleet Weight of 0.05 for a c4.8xlarge provides 20 Spot
Instances for a single capacity unit. The Spot Fleet Weight of
0.05 for a c4.8xlarge provides 60,000 Spot Instances within a
single Spot Fleet when the target capacity is 3,000.

Determining the optimal values for Spot Fleet Weights for
each Spot Instance Type took some trial and error. During
execution, a change in the Spot Fleet Weights caused a change
in the types of Spot Instance types that were launched. Several

TABLE III
EXAMPLE OF EFFECT OF CUSTOM FRACTIONAL SPOT FLEET SYSTEM

LIMITS WITH C4.8XLARGE INSTANCE TYPE

Instance
Type

(vCPU=36)

Capacity
Units

Spot
Weight

Total
Instances
Per Fleet

Spot
Weight
Type

c4.8xlarge 1 1 1 Instances
c4.8xlarge 3,000 36 83 vCPU
c4.8xlarge 1 0.05 20 Custom
c4.8xlarge 3,000 0.05 60,000 Custom

adjustments were made in the Spot Fleet Weights so that Spot
Fleets with larger vCPU counts were launched with higher
frequency than those with smaller vCPU instances.

Launching larger AWS Instance types is a necessity at
massive scale. For example, the use of only Spot Fleets with
4-vCPU instances requires many more Spot Instances than the
use of 36-vCPU instances. For a goal of one million vCPUs,
use of only the 4-vCPU instance type requires 250,000 Spot
Instances. In comparison, use of only 36-vCPU instances re-
quires 27,778 Spot Instances. Management overhead increases
greatly with each additional Spot Instance, making resource
management unwieldy with smaller instances. In practice, not
all instance types are always available at a competitive price
and a mix of instance types must be used to obtain the best
price/runtime tradeoffs.

Our first Spot Weighting attempt was to specify a Spot Fleet
that contained a wide range of instance types ranging from
a “Huge” 128-vCPU instance to a “Tiny” 4-vCPU instance.
However, it was difficult to specify the Spot Fleet Weights
in such a way that would consistently select more larger
expensive instances over the smaller cheaper instances. After
several failed tests with the wide range of instance types, we
created “workflow classes” that only contained instances that
had similar characteristics. This ensured a certain capacity
from each Spot Fleet and allowed more control over the
launching process. The Spot Fleets details for each workflow
class are shown in Table IV. The table shows the five workflow
classes along with instance types and the Spot Fleets details
that were utilized. Analysis, modeling, and prediction of the
effects of Spot Fleet weights are areas of future work.

E. Scheduler Scalability

A medium-scale test of a few thousand compute instances
revealed the next potential bottleneck: the scalability of Salt-
Stack and SLURM. SLURM is a HPC batch scheduler through
which users submit jobs. SLURM schedules the jobs on
the available compute resources. According to the SLURM
website, the largest SLURM cluster contains 98,304 nodes,
which is much less than our maximum instance limit of
250,000 [17]. We set a goal to keep each environment under
98,304 nodes to avoid potential issues with SLURM.

As is typical of HPC schedulers, SLURM is built to be
statically configured. Node configurations are known well
before job scheduling, and are coded in a configuration file. In
a traditional cluster, all of the IP addresses, hardware configu-
rations, and total number of compute instances are known. But

TABLE IV
SPOT FLEET DETAILS BY WORKFLOW CLASS

Workflow
Class

Instance
Types

Max
Spot
Bid
Price

Spot
Fleet
Weights

Capacity
Units

Number
Used in

1M
Run

Huge x1.16xlarge
m4.16xlarge

$1.570
$1.670

0.064
0.064 320 1

Large
c4.8xlarge
c3.8xlarge
r4.8xlarge

$0.800
$0.876
$0.700

0.036
0.032
0.032

160 4

Medium

c4.4xlarge
hi1.4xlarge
i3.4xlarge
r4.4xlarge
m4.4xlarge

$0.370
$0.370
$0.418
$0.470
$0.514

0.014
0.014
0.015
0.015
0.015

70 3

Small
m4.2xlarge
m3.2xlarge
c4.2xlarge

$0.258
$0.236
$0.190

0.007
0.007
0.006

32 5

Tiny c4.xlarge $0.100 0.025 100 1

in the cloud environment all of these are decided at run time
and have to be added dynamically to the SLURM configuration
file as the instances launch. This new configuration file has to
be pushed to each compute instance for use by SLURM.

The CloudyCluster component of PAW utilizes SaltStack to
push out the configuration file to compute instances from a
single Salt Master, but this is a bottleneck in our deployment.
Technically, there is no limit to the number of Salt Minions
(i.e., compute instances) that are supported by a single mas-
ter. However, the resources required to run the Salt Master
increase with the number of Salt Minions. A larger number
of minions is generally handled by utilizing salt-syndic, but
this feature was not implemented in CloudyCluster. To avoid
possible resource issues and bottlenecks with the single Salt
Master configuration, we created multiple CloudyCluster en-
vironments with a maximum of 5,000 compute instances per
environment in order to ensure that we would stay well within
the scaling limits of both SaltStack and SLURM.

The creation of multiple cluster environments is a strategic
optimization of the management of the massive number of
resources, and does not detract from the execution of our
HTC workload. Creating multiple environments allowed us to
stay well under the scaling limits imposed by our versions
of SLURM and SaltStack, to maintain the dynamic nature
of our workflow, and to minimize the effects of a failure.
A benefit of this approach is that a catastrophic failure in
a single environment does not affect other environments or
the executing instances in those environments. In addition,
we can partition the workflow logically and run different
analyses on different environments. Since HTC jobs execute
independently, their execution is independent of the creation
and management of the cluster environments.

We performed rigorous testing of environments at the 5,000-
instance scale. During the initial 5,000-instance tests, we no-
ticed that the instances were not registering with the scheduler
in a timely manner. In initial testing it took almost 45 minutes
for all 5,000 compute instances to register with the scheduler.
This is too long, because until the instances are registered they

cannot run jobs and because execution of resources that are
not doing useful work at such a large scale is wasteful.

Upon close examination of the instance registration process
we found an issue with frequent restarts of the SLURM sched-
uler by CloudyCluster. When a new instance is added Cloudy-
Cluster restarts the SLURM scheduler which re-calculates the
instance bitmaps used for scheduling. These restarts do not
take long with just a few compute nodes, but as the number
of compute instances grows so does the time for SLURM to
restart. Detailed examination revealed that the restart call was
being called too often, causing the delay in the registering
of instances. When the extra restart call was removed the
time for all 5,000 instances to register dropped from 45 to
25 minutes. The first instances registered within five minutes
of the workload being submitted, and 90% of the instances
were registered within twenty minutes.

F. User Limits

By default, AWS imposes limits on the number of resources
that users can create. This is a common practice among com-
mercial cloud providers as it prevents users from accidentally
incurring an unexpectedly large bill while also making sure
that the commercial cloud provider can support the requests
of all users. All of the commercial cloud providers also provide
mechanisms to increase certain limits. When running at a large
scale increasing these limits is required.

The first limits that we identified that needed to be increased
were the EC2 On-Demand Instance, VPC, and EC2 Spot
Instance limits. These limits prevent the launching of a large
number of instances and the creation of a large number of
networks. A user typically fills out an online form requesting
the limit increases for specific AWS services and resources
along with the reason and use case for the request. Working
with AWS associates resolved these issues.

Another limit encountered during the scalability tests was
the VPC endpoint limit. This was discovered after implement-
ing the VPC Endpoint solution for the issues encountered with
S3. We worked directly with AWS to raise this limit.

Amazon Elastic Block Storage (EBS) limits are another
crucial limit for our experiment. All EC2 instances that we
used were backed by an EBS volume. By default, an AWS
account is limited to 20TB of EBS storage. Each compute
instance needed a 40GB EBS volume attached to it, which
means 20TB would only support 500 instances. In the extreme
case, using 250,0000 4-vCPU instances to reach the one
million core goal, about 10PB of EBS storage is required.
We requested and received an increase of the limit to 8PB of
EBS storage.

G. API Limits

Like most APIs, AWS imposes limits on the number of
API calls that can be issued within a certain period of time.
This helps to prevent the misuse of the APIs and keeps the
underlying system from becoming overwhelmed too many
calls. This API throttling also allows AWS to ensure that
other users are not affected by another user abusing the APIs.

Fig. 1. Timeline of vCPU count from the start of the run to the time of the
peak vCPU use count.

However, running at a massive scale with tens of thousands of
instances making API calls from the same account at the same
time generates a large number of legitimate API requests in a
short period of time. This was an issue that we encountered.

After we had launched 33,787 Spot Instances, we noticed
that our new calls to launch more Spot Instances were failing
consistently. Investigation revealed that we were being throt-
tled by the system because of the number of API calls we were
making within a short time period. Post execution analysis
revealed that the culprit generating a majority of the API calls
was the desribeInstances API call.

We were utilizing the describeInstances call to obtain statis-
tics about our AWS account and the EC2 instances running
within it. The statistics generated by the describeInstances API
call enabled observation of execution progress. We knew that
there was the possibility of throttling of these calls at massive
scale. To stop the throttling, we turned off our monitoring tools
and slowed the launching of new workflow classes. Although
this limited the amount of observational data we could collect
during execution, it also reduced our API usage, and after a
few minutes we were able to resume launching new workflow
classes.

Another solution to this issue is to utilize the Amazon
CloudWatch service for the monitoring instead of the de-
scribeInstances API calls. CloudWatch provides events that
allow users to be notified as EC2 instances are launched and
terminated. By using CloudWatch, the number of API calls
required to monitor the account and instances is reduced,
which reduces the risk of API throttling.

V. SCIENTIFIC WORKLOAD

Our target scientific application is a large scale parameter
sweep workflow that executes a message-passing parallel topic
modeling application on multiple datasets. Topic modeling
based on Latent Dirichlet Allocation is a common approach
to text analysis in machine learning [37]. In this context,
documents are considered to be generated by a combination
of topics, each of which is a distribution over the vocabulary.
Only the resulting documents are observed, and the topics and
topic mixtures specific to each document are inferred. While

Fig. 2. The distribution of vCPUs among the instance types used at peak.

these models are widely used, evaluation of their outputs and
sensitivity to the various input parameters is an active area of
research [38].

Our scientific workload examines the impact of the alpha,
beta, and topic count parameters, which are input parameters
required by the topic modeling algorithm, on topic models
of two different text datasets. The workflow performs a wide
sweep of hundreds of thousands of parameter combinations.
Each parameter combination is input to a topic modeling job
executing Parallel Latent Dirichlet Allocation (PLDA) [39] on
one of the two datasets. The first dataset includes full text
conference proceedings from Advances in Neural Information
Processing Systems (NIPS) [40]. The second dataset include
seventeen years of abstracts from a wide variety of computer
science publications that was provided to us from Elsevier
Scopus. Each job outputs a set of topic vectors which future
work can utilize to explore the sensitivity of topic quality with
respect to input parameters.

The topic modeling workflow has a number of character-
istics that are typical of parameter sweep workflows and that
impact the design of our system. First, each job is a parallel
application that requires MPI. Secondly, most of the jobs use
the same input data and are distinguished from each other
by minor parameter changes that can be captured in small
configuration files. We take advantage of these characteristics
by loading the common input data into the machine image,
so as to avoid requiring each job to download the same data
file during the execution and placing unnecessary load on the
NAT instances as described previously.

VI. EXECUTION AND EVALUATION

In this section we discuss the execution and evaluation of
the scientific workflow, including detailed discussion of the
technical aspects and cost analysis necessary to achieve our
goal of at least one million concurrent vCPUs.

A. Experimental Execution

The workload executed across a set of cluster environments.
Each of these environments was configured identically with the
exception of the selection of instance types used. We prepared

Fig. 3. The effect of our experiment on the Spot Prices of the c4.8xlarge
instances in each Availability Zone. The chart shows that prices were near
US $0.40 for all Availability Zones prior to the start of the experiment, and
that prices rose by as much as a factor of two during the experiment.

and launched the core components only of forty cluster envi-
ronments, which provided extra environments ready to launch
instances in the case that some environments failed.

The environments were launched in two different stages.
During the first stage, PAW launched the minimal set of stan-
dard cluster environmental components including the Control,
Scheduler, Login, and NAT instances. To accomplish this,
PAW utilized a common configuration file with a pre-defined
environment template. The second phase, which included
launching 5,000 compute instances in each environment, was
also initiated by PAW using configuration files with different
topic modeling workflow configurations specified. During this
stage, PAW processes the topic modeling workflows and then
automatically submits them to the running environments via
CCQ. CCQ then handles the dynamic provisioning of the
requested compute instances utilizing AWS Spot Fleets.

The configuration files used in the second stage specify the
experiment to run and which workflow class to launch. Each
workflow class specifies different instance types and Spot Fleet
configurations, as shown in Table IV. These classes are color
coded to show which Amazon Instance Types were specified
in each workflow class.

The first workflow class was submitted to the first en-
vironment at 3:43PM EST. During the next two hours we
successfully launched 1 Huge, 4 Large, 3 Medium, 5 Small,
and 1 Tiny workflow classes, for a total of 14 workflow classes.
We had previously prepared 40 environments for launching
workflow classes in case of failures of various kinds. However,
only 14 environments were required to obtain a total number
of executing vCPUs of more than one million.

Some API throttling during the experiment caused the pace
of launching of new instances to be slowed considerably. This
can be observed in Fig. 1 around the 600,000-vCPU mark. As
mentioned in the API Limits section, to move past this issue
we lengthened the time between launches and turned off some
of our monitoring tools to decrease the number of API calls
being made.

At 5:39PM EST, we reached the peak vCPU count of
1,119,196 vCPUs running within 49,925 Spot Instances spread
across 12 instance types. A breakdown of the total number of
vCPUs per instance type at the peak time is shown in Fig. 2.

TABLE V
INSTANCE TYPE CLASSES AND AVERAGE VCPU HOUR COSTS

Workflow
Class Instance Type vCPUs vCPU hour

Cost

Huge x1.16xlarge
m4.16xlarge

64
64

$0.0242
$0.0193

Large
c4.8xlarge
c3.8xlarge
r4.8xlarge

36
32
32

$0.0150
$0.0188
$0.0186

Medium

i3.4xlarge
r4.4xlarge
m4.4xlarge
hi1.4xlarge
c4.4xlarge

16
16
16
16
16

$0.0257
$0.0218
$0.0197
$0.0187
$0.0131

Small
m4.2xlarge
m3.2xlarge
c4.2xlarge

8
8
8

$0.0213
$0.0204
$0.0132

Tiny c4.xlarge 4 $0.0128

The entire execution was contained within a single Amazon
Region, N. Virginia. This is of note because the AWS Spot
market utilizes unused capacity in order to fulfill instance
requests. The provisioning of more than 1.1 million vCPUs
in a single Amazon region highlights the scalability of our
approach and the massive capability of the cloud for scientific
computation.

We were able to fully execute, from start to finish, just under
a half a million jobs submitted by our topic modeling workflow
in under two hours. On a local shared cluster resource, running
half a million jobs would have taken several days or weeks.

B. Cost Analysis

An important question when considering the use of com-
mercial cloud resources is the cost comparison between the
commercial cloud and local resources. These comparisons are
complex and depend on a variety of factors such as the size,
utilization, and maintenance costs associated with the local
resource along with the characteristics of the workflow being
executed. Cost estimation done at a representative university
shows on-premise computational costs to be well under US
$0.02 cents per core hour, regardless of job type (serial, shared
memory parallel, distributed parallel). This estimate includes
costs for hardware, software, space, power, cooling, labor,
network etc, but excludes user-facing services such as user
support and research computing facilitation [41].

We set our maximum Spot Bid Price per instance type at
the price that would keep us close to US $0.02 per vCPU
hour. This strategy helped to keep the costs down and narrow
down the choices of instance types. Another strategy that we
employed to keep costs down was to utilize the Spot Fleet
Weighting feature which allowed us to steer our Spot Fleet
to launch certain more desirable types of instances over other
less desirable instances. Our maximum Spot Bid Price and our
Spot Fleet Weights per instance type are shown in Table IV.

Another cost tradeoff when running at a large scale is
that when utilizing a massive number of resources users
begin to compete against themselves, which drives up Spot
Pricing. During our experiment, we found that launching many
instances raised the Spot Price up to our maximum Spot Bid

Fig. 4. The cost per vCPU hour of each AWS Instance Type used. The solid
line is the average price per vCPU hour across all Instance Types and the
dotted red line is the target price per vCPU hour.

Price for certain instance types utilized. Fig. 3 shows Spot
prices for the c4.8xlarge instance type in the six Availability
Zones. Fig. 3 also shows that the average instance price for
the period during the massive run is as much a twice the price
during the hour prior to the run.

During our experiment, we used a total of 1,832,923 vCPU
hours at an average cost of $0.0172 per core hour. While other
costs may need to be considered when running workflows in
AWS, for our scientific application the costs for network egress
out of AWS and data storage within AWS were negligible. The
total cost for the computation resources was $32,423 for the
two hours of execution. A summary of the cost per vCPU hour
by instance type and “workflow class” is shown in Table V. A
graph showing the cost per vCPU hour, the target price, and
average price for all instance types is shown in Fig 4.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we present the challenges and solutions as-
sociated with launching a massive scale computational clus-
ter environment in the AWS commercial cloud. We utilized
the automated Provisioning And Workflow management tool
(PAW) [12] for the lifecycle tasks of cluster provisioning,
workflow execution, and cluster de-provisioning. Utilizing
PAW, we were able to run our topic modeling workflow on
1,119,196 vCPUs simultaneously with minimal user input at
an average cost of $0.0172 per vCPU hour.

A number of limitations to massive scaling on the com-
mercial cloud were discovered and resolved in this research.
Several of the limitations we identified and resolved are
generally common to execution on all commercial clouds.
These include those of a shared filesystem, network limitations
such as NAT instances, launching of heterogeneous instance
types to control costs, HPC scheduler stability, cloud vendor
user limits, and API limits. A limitation that may be specific
to AWS is the dynamic pricing effect on the Spot market.
We provide a detailed cost analysis for running on AWS, and
describe how costs may be lowered with smaller workloads
using the same technologies.

The execution of a massive HTC application in the commer-
cial cloud is a promising demonstration of the use of the cloud

for scientific applications, and suggests opportunities for the
emergence of new synergies between the scientific community
and commercial cloud providers.

ACKNOWLEDGEMENTS

We acknowledge support from Amazon Web Services, Om-
nibond, HPCC Systems, LexisNexis Risk Solutions, Elsevier
Scopus, GAANN award #P200A150310, and NSF #1228312.

REFERENCES

[1] Columbus, Louis. “Forrester’s 10 Cloud Computing Predictions
For 2018.” Forbes, Forbes Magazine, 20 Nov. 2017,
www.forbes.com/sites/louiscolumbus/2017/11/07/forresters-10-cloud-
computing-predictions-for-2018/#2719d1694ae1.

[2] “Top 500 List, http://www.top500.org”.
[3] Roloff, Eduardo, et al. “High Performance Computing in the cloud:

Deployment, performance and cost efficiency.” 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings,
2012, doi:10.1109/cloudcom.2012.6427549.

[4] Mehrotra, Piyush, et al. “Performance evaluation of Amazon EC2
for NASA HPC applications.” Proceedings of the 3rd workshop
on Scientific Cloud Computing Date - ScienceCloud 12, 2012,
doi:10.1145/2287036.2287045.

[5] Gupta, Abhishek, and Dejan Milojicic. “Evaluation of HPC Ap-
plications on Cloud.” 2011 Sixth Open Cirrus Summit, 2011,
doi:10.1109/ocs.2011.10.

[6] Iosup, A, et al. “Performance Analysis of Cloud Computing Ser-
vices for Many-Tasks Scientific Computing.” IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 6, 2011, pp. 931945.,
doi:10.1109/tpds.2011.66.

[7] Tomic, D., et al. “Running HPC applications on many million cores
Cloud.” 2017 40th International Convention on Information and Com-
munication Technology, Electronics and Microelectronics (MIPRO),
2017, doi:10.23919/mipro.2017.7973420.

[8] Gupta, Abhishek, et al. “Evaluating and Improving the Performance
and Scheduling of HPC Applications in Cloud.” IEEE Transac-
tions on Cloud Computing, vol. 4, no. 3, Jan. 2016, pp. 307321.,
doi:10.1109/tcc.2014.2339858.

[9] Gupta, A., et al. “Improving HPC Application Performance in Cloud
through Dynamic Load Balancing.” 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Computing, 2013,
doi:10.1109/ccgrid.2013.65.

[10] Gonzalez, Patricia, et al. “Using the Cloud for Parameter Estimation
Problems: Comparing Spark vs MPI with a Case-Study.” 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID), 2017, doi:10.1109/ccgrid.2017.58.

[11] Mariani, Giovanni, et al. “Predicting Cloud Performance for HPC
Applications: A User-Oriented Approach.” 2017 17th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2017, doi:10.1109/ccgrid.2017.11.

[12] Posey, et al. “Automated Cluster Provisioning And Workflow Man-
agement for Parallel Scientific Applications in the Cloud.” MTAGS’17
(2017).

[13] Jonas, Eric, et al. “Occupy the cloud.” Proceedings of the
2017 Symposium on Cloud Computing - SoCC 17, 2017,
doi:10.1145/3127479.3128601.

[14] Holzman, Burt, et al. “HEPCloud, a New Paradigm for HEP Facilities:
CMS Amazon Web Services Investigation.” Computing and Software for
Big Science, vol. 1, no. 1, 2017, doi:10.1007/s41781-017-0001-9.

[15] Barrett, Alex. “220,000 cores and counting: MIT math
professor breaks record for largest ever Compute Engine
job.” Google Cloud Platform Blog, Google, 20 Apr. 2017,
cloudplatform.googleblog.com/2017/04/220000-cores-and-counting-
MIT-math-professor-breaks-record-for-largest-ever-Compute-Engine-
job.html. Accessed 24 Oct. 2017.

[16] Sadooghi, Iman, et al. “Achieving Efficient Distributed Schedul-
ing with Message Queues in the Cloud for Many-Task Computing
and High-Performance Computing.” 2014 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 2014,
doi:10.1109/ccgrid.2014.30.

[17] “Large Cluster Administration Guide.” Slurm Workload Manager,
SchedMD, slurm.schedmd.com/big sys.html. Accessed 24 Oct. 2017.

[18] “Announcing Amazon EC2 per second billing.” Amazon Web
Services, Inc., 2 Oct. 2017, aws.amazon.com/about-aws/whats-
new/2017/10/announcing-amazon-ec2-per-second-billing/. Accessed 24
Oct. 2017.

[19] “Amazon Web Services (AWS) - Cloud Computing Services.” Amazon
Web Services, Inc., aws.amazon.com/. Accessed 3 Sept. 2017.

[20] “Extending per second billing in Google Cloud.”
Google Cloud Platform Blog, Google, 26 Sept. 2017,
cloudplatform.googleblog.com/2017/09/extending-per-second-billing-
in-google.html. Accessed 24 Oct. 2017.

[21] “Linux Virtual Machines Pricing.” Pricing - Linux Virtual
Machines — Microsoft Azure, Microsoft, azure.microsoft.com/en-
us/pricing/details/virtual-machines/linux/. Accessed 24 Oct. 2017.

[22] “Amazon EC2 Spot Instances.” Amazon Web Services, Inc.,
aws.amazon.com/ec2/spot/. Accessed 24 Oct. 2017.

[23] “How Spot Fleet Works.” How Spot Fleet Works -
Amazon Elastic Compute Cloud, Amazon Web Services,
docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html.
Accessed 24 Oct. 2017.

[24] “Preemptible VM Instances — Compute Engine Docu-
mentation — Google Cloud Platform.” Google, Google,
cloud.google.com/compute/docs/instances/preemptible. Accessed
24 Oct. 2017.

[25] “Self Service HPC In The Cloud.” CloudyCluster,
www.cloudycluster.com/. Accessed 3 Sept. 2017.

[26] “Using CCQ.” CloudyCluster Documentation, Omnibond,
docs.cloudycluster.com/home/submitting and managing jobs/using ccq.htm.
Accessed 6 Nov. 2017.

[27] “CfnCluster.” CfnCluster CfnCluster 1.3.1, Amazon Web Services,
cfncluster.readthedocs.io/en/latest/. Accessed 24 Oct. 2017.

[28] Posey, Brandon M. “Dynamic HPC Clusters within Amazon
Web Services (AWS).” Clemson University, 2016, tiger-
prints.clemson.edu/all theses/2392. Accessed 3 Sept. 2017.

[29] “Flight Appliance Documentation - 2017.1r1.” Flight Appliance Doc-
umentation - 2017.1r1 flight-Appliance-Docs 1.0 documentation, Al-
ces Flight, docs.alces-flight.com/en/stable/index.html. Accessed 24 Oct.
2017.

[30] Hendrix, Valerie, et al. “Tigres Workflow Library: Supporting Scien-
tific Pipelines on HPC Systems.” 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016,
doi:10.1109/ccgrid.2016.54.

[31] “Is FireWorks for me?” Introduction to FireWorks (Workflow
software) FireWorks 1.5.2 documentation, materialspro-
ject.github.io/fireworks/index.html. Accessed 3 Sept. 2017.

[32] “QDO.” QDO Overview, bitbucket.org/berkeleylab/qdo. Accessed 4
Sept. 2017.

[33] “A simple tool for fast, easy scripting on big machines.” The Swift
Parallel Scripting Language, swift-lang.org/main/. Accessed 4 Sept.
2017.

[34] Vahi, Karan, et al. “Pegasus WMS.”Pegasus WMS, 24 Aug. 2017,
pegasus.isi.edu/. Accessed 4 Sept. 2017.

[35] Apon, A.w., et al. “Sensitivity of Cluster File System Access
to I/O Server Selection.” 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID02), 2002, ieeex-
plore.ieee.org/document/1540455/. Accessed 6 Nov. 2017.

[36] “Amazon Virtual Private Cloud (VPC).’ Amazon Web Services, Inc.,
Amazon Web Services, aws.amazon.com/vpc/pricing/. Accessed 24 Oct.
2017.

[37] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. “Latent dirichlet
allocation.” Journal of machine Learning research 3.Jan (2003): 993-
1022.

[38] Blei, David M. “Probabilistic topic models.” Communications of the
ACM 55.4 (2012): 77-84.

[39] Wang, Yi, et al. “PLDA: Parallel Latent Dirichlet Allocation for Large-
Scale Applications.” AAIM 9 (2009): 301-314.

[40] Amir Globerson, et al. “Euclidean Embedding of Co-occurrence Data.”
JMLR 8, 2007.

[41] Neeman, Henry. personal communication, 6 Nov. 2017.

